##罗马数字转整数
2020年12月18日

罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。

字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。

通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:

I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给定一个罗马数字,将其转换成整数。输入确保在 1 到 3999 的范围内。

示例:
输入: "III"
输出: 3

import java.util.*;

class Solution {
    public int romanToInt(String s) {
        int sum = 0;
        int preNum = getValue(s.charAt(0));
        for(int i = 1;i < s.length(); i ++) {
            int num = getValue(s.charAt(i));
            if(preNum < num) {
                sum -= preNum;
            } else {
                sum += preNum;
            }
            preNum = num;
        }
        sum += preNum;
        return sum;
    }
    
    private int getValue(char ch) {
        switch(ch) {
            case 'I': return 1;
            case 'V': return 5;
            case 'X': return 10;
            case 'L': return 50;
            case 'C': return 100;
            case 'D': return 500;
            case 'M': return 1000;
            default: return 0;
        }
    }
}

按照题目的描述,可以总结如下规则:

罗马数字由 I,V,X,L,C,D,M 构成;
当小值在大值的左边,则减小值,如 IV=5-1=4;
当小值在大值的右边,则加小值,如 VI=5+1=6;
由上可知,右值永远为正,因此最后一位必然为正。
一言蔽之,把一个小值放在大值的左边,就是做减法,否则为加法。

在代码实现上,可以往后看多一位,对比当前位与后一位的大小关系,从而确定当前位是加还是减法。当没有下一位时,做加法即可。

也可保留当前位的值,当遍历到下一位的时,对比保留值与遍历位的大小关系,再确定保留值为加还是减。最后一位做加法即可。

回文数

2020年12月17日
判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。

示例 1:
输入: 121
输出: true
示例 2:
输入: -121
输出: false
解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。

class Solution {
    public boolean isPalindrome(int x) {
        // 特殊情况:
        // 如上所述,当 x < 0 时,x 不是回文数。
        // 同样地,如果数字的最后一位是 0,为了使该数字为回文,
        // 则其第一位数字也应该是 0
        // 只有 0 满足这一属性
        if (x < 0 || (x % 10 == 0 && x != 0)) {
            return false;
        }

        int revertedNumber = 0;
        while (x > revertedNumber) {
            revertedNumber = revertedNumber * 10 + x % 10;
            x /= 10;
        }

        // 当数字长度为奇数时,我们可以通过 revertedNumber/10 去除处于中位的数字。
        // 例如,当输入为 12321 时,在 while 循环的末尾我们可以得到 x = 12,revertedNumber = 123,
        // 由于处于中位的数字不影响回文(它总是与自己相等),所以我们可以简单地将其去除。
        return x == revertedNumber || x == revertedNumber / 10;
    }
}

整数反转

2020年12月15日
给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转。

示例 1:
输入: 123
输出: 321

示例 2:
输入: -123
输出: -321

class Solution {
    public int reverse(int x) {
        int rev = 0;
        while (x != 0) {
            int pop = x % 10;
            x /= 10;
            if (rev > Integer.MAX_VALUE/10 || (rev == Integer.MAX_VALUE / 10 && pop > 7)) return 0;
            if (rev < Integer.MIN_VALUE/10 || (rev == Integer.MIN_VALUE / 10 && pop < -8)) return 0;
            rev = rev * 10 + pop;
        }
        return rev;
    }
}

两数之和

2020年12月14日

给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。

给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]

两个for循环嵌套的方法还是算了,不推荐;
哈希表解法:

class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> hashtable = new HashMap<Integer, Integer>();
        for (int i = 0; i < nums.length; ++i) {
            if (hashtable.containsKey(target - nums[i])) {
                return new int[]{hashtable.get(target - nums[i]), i};
            }
            hashtable.put(nums[i], i);
        }
        return new int[0];
    }
}

Q.E.D.

知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议